资源类型

期刊论文 652

会议视频 14

会议信息 1

年份

2024 1

2023 53

2022 60

2021 69

2020 45

2019 62

2018 36

2017 42

2016 26

2015 28

2014 25

2013 36

2012 13

2011 30

2010 19

2009 39

2008 22

2007 19

2006 2

2005 5

展开 ︾

关键词

固体氧化物燃料电池 8

燃料电池 7

高分子材料 5

绿色化工 4

4D打印 2

SOFC 2

临床试验 2

低温SOFC 2

催化剂 2

双极板 2

固体氧化物电解池 2

增材制造 2

干细胞 2

氢燃料电池 2

氢能 2

燃烧特性 2

生物质 2

电解质 2

碳中和 2

展开 ︾

检索范围:

排序: 展示方式:

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 334-364 doi: 10.1007/s11708-017-0490-6

摘要: Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.

关键词: polymer electrolyte fuel cell     ultra-thin catalyst layer     electrostatic interactions     characterization and modeling     structure-property-performance relation     water management    

Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell

Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN

《能源前沿(英文)》 2017年 第11卷 第3期   页码 326-333 doi: 10.1007/s11708-017-0489-z

摘要: In this paper, a novel accelerated test method was proposed to analyze the durability of MEA, considering the actual operation of the fuel cell vehicle. The proposed method includes 7 working conditions: open circuit voltage (OCV), idling, rated output, overload, idling-rated cycle, idling-overload cycle, and OCV-idling cycle. The experimental results indicate that the proposed method can effectively destroy the MEA in a short time (165 h). Moreover, the degradation mechanism of MEA was analyzed by measuring the polarization curve, CV, SEM and TEM. This paper may provide a new research direction for improving the durability of fuel cell.

关键词: polymer electrolyte membrane fuel cell     accelerated life-time test     load cycling test     durability    

annealing synthesis of double-shell truncated octahedral Pt-Ni alloys for oxygen reduction reaction of polymerelectrolyte membrane fuel cells

Xiashuang LUO, Yangge GUO, Hongru ZHOU, Huan REN, Shuiyun SHEN, Guanghua WEI, Junliang ZHANG

《能源前沿(英文)》 2020年 第14卷 第4期   页码 767-777 doi: 10.1007/s11708-020-0667-2

摘要: Shape-controlled Pt-Ni alloys usually offer an exceptional electrocatalytic activity toward the oxygen reduction reaction (ORR) of polymer electrolyte membrane fuel cells (PEMFCs), whose tricks lie in well-designed structures and surface morphologies. In this paper, a novel synthesis of truncated octahedral PtNi alloy catalysts that consist of homogeneous Pt-Ni alloy cores enclosed by NiO-Pt double shells through thermally annealing defective heterogeneous PtNi alloys is reported. By tracking the evolution of both compositions and morphologies, the outward segregation of both PtO and NiO are first observed in Pt-Ni alloys. It is speculated that the diffusion of low-coordination atoms results in the formation of an energetically favorable truncated octahedron while the outward segregation of oxides leads to the formation of NiO-Pt double shells. It is very attractive that after gently removing the NiO outer shell, the dealloyed truncated octahedral core-shell structure demonstrates a greatly enhanced ORR activity. The as-obtained truncated octahedral Pt Ni core-shell alloy presents a 3.4-folds mass-specific activity of that for unannealed sample, and its activity preserves 45.4% after 30000 potential cycles of accelerated degradation test (ADT). The peak power density of the dealloyed truncated octahedral Pt Ni core-shell alloy catalyst based membrane electrolyte assembly (MEA) reaches 679.8 mW/cm , increased by 138.4 mW/cm relative to that based on commercial Pt/C.

关键词: dealloyed Pt-Ni alloys     truncated octahedron     double-shell     thermal annealing     oxygen reduction reaction (ORR)    

Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte

Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund

《化学科学与工程前沿(英文)》 2018年 第12卷 第1期   页码 162-173 doi: 10.1007/s11705-017-1642-2

摘要: A comparative analysis of perovskite structured cathode materials, La Sr MnO (LSM), La Sr CoO (LSC), La Sr FeO (LSF) and La Sr Co Fe O (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd Ce O (GDC) and a eutectic mixture of Na CO and Li CO . The compatibility of these nanocomposite electrode powder materials was investigated under air, CO and air/CO atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω·cm ) followed by LSF (15.23 Ω·cm ), LSCF (19.38 Ω·cm ) and LSM (>300 Ω·cm ). In addition, low frequency EIS measurements (down to 50 µHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm at 550 °C under fuel cell conditions.

关键词: electrode     fuel cell     low-temperature     nanocomposite     perovskite    

固体氧化物燃料电池的电解质及电极材料的电导率研究方法

贺贝贝,潘 鑫,夏长荣

《中国工程科学》 2013年 第15卷 第2期   页码 57-65

摘要:

论述了晶体材料,重点是固体氧化物燃料电池组件的导电机理,介绍了影响电导率的几个因素。针对不同的电解质和电极材料,讨论了几种常用的测量电解质和电极总电导率、电子电导率以及离子电导率的方法,并指出在测量中需要注意的问题。

关键词: 导电机理     电解质     电极     电导率     固体氧化物燃料电池    

Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell

Yanping HOU, Kaiming LI, Haiping LUO, Guangli LIU, Renduo ZHANG, Bangyu QIN, Shanshan CHEN

《环境科学与工程前沿(英文)》 2014年 第8卷 第1期   页码 137-143 doi: 10.1007/s11783-013-0534-z

摘要: Separator between anode and cathode is an essential part of the microbial fuel cell (MFC) and its property could significantly influence the system performance. In this study we used polyvinyl alcohol (PVA) polymer membrane crosslinked with sulfosuccinic acid (SSA) as a new separator for the MFC. The highest power density of 759±4 mW·m was obtained when MFC using the PVA membrane crosslinked with 15% of SSA due to its desirable proton conductivity (5.16 × 10 S·cm ). The power density significantly increased to 1106±30?mW·m with a separator-electrode-assembly configuration, which was comparable with glass fiber (1170±46?mW·m ). The coulombic efficiencies of the MFCs with crosslinked PVA membranes ranged from 36.3% to 45.7% at a fix external resistance of 1000 ?. The crosslinked PVA membrane could be a promising alternative to separator materials for constructing practical MFC system.

关键词: microbial fuel cell     crosslinked polyvinyl alcohol (PVA) membrane     separator material     power generation     coulombic efficiency    

低温固体氧化物燃料电池的复合电解质材料

谢富丞,王诚,毛宗强

《中国工程科学》 2013年 第15卷 第2期   页码 72-76

摘要:

固体氧化物燃料电池(SOFC)是一种高效、环保的发电装置。低温化是SOFC的主要发展方向。探索适合在低温(400~600 ℃)条件下操作的高性能电解质材料是SOFC低温化发展的关键。近年来,研究人员发展了新型的复合电解质材料,取得了较好的成果。本文综述了近年来低温SOFC复合电解质材料的研究进展,简要介绍了复合电解质材料的特点、类型和传导机理。

关键词: 低温SOFC     复合电解质     传导机理    

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 318-325 doi: 10.1007/s11708-017-0488-0

摘要: The durability of proton exchange membrane fuel cells (PEMFCs) has been posing a key technical challenge to commercial spread of fuel cell vehicles (FCVs). To improve the durability, it is necessary to optimize the fuel cell system (FCS) design against failure modes. The fuel cell durability research method at FCS scale was exhibited, and the failure modes of fuel cell were experimentally investigated in this paper. It is found that the fuel cell dry operation, start/stop cycle and gas diffusion layer (GDL) flooding are typical failure modes of fuel cells. After the modifications against the failure modes, the durability of FCSs is improved to over 3000 h step by step.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel cell system (FCS)     durability     failure mode     fuel cell vehicle (FCV)     carbon corrosion     water management    

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

《能源前沿(英文)》 2019年 第13卷 第2期   页码 325-338 doi: 10.1007/s11708-019-0618-y

摘要: Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

关键词: PEM fuel cell     gas diffusion electrode(GDE)     gas diffusion layer(GDL)     membrane electrode assembly     durability     fuel cell catalyst    

A hybrid fuel cell for water purification and simultaneously electricity generation

《环境科学与工程前沿(英文)》 2023年 第17卷 第1期 doi: 10.1007/s11783-023-1611-6

摘要:

● A novel hybrid fuel cell (F-HFC) was fabricated.

关键词: Flow-through field     Hybrid fuel cell     Polyoxometalates     Water purification     Electricity generation    

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

《能源前沿(英文)》 2022年 第16卷 第5期   页码 852-861 doi: 10.1007/s11708-021-0811-7

摘要: Fuel starvation can occur and cause damage to the cell when proton exchange membrane fuel cells operate under complex working conditions. In this case, carbon corrosion occurs. Oxygen evolution reaction (OER) catalysts can alleviate carbon corrosion by introducing water electrolysis at a lower potential at the anode in fuel shortage. The mixture of hydrogen oxidation reaction (HOR) and unsupported OER catalyst not only reduces the electrolysis efficiency, but also influences the initial performance of the fuel cell. Herein, Ti4O7 supported IrOx is synthesized by utilizing the surfactant-assistant method and serves as reversal tolerant components in the anode. When the cell reverse time is less than 100 min, the cell voltage of the MEA added with IrOx/Ti4O7 has almost no attenuation. Besides, the MEA has a longer reversal time (530 min) than IrOx (75 min), showing an excellent reversal tolerance. The results of electron microscopy spectroscopy show that IrOx particles have a good dispersity on the surface of Ti4O7 and IrOx/Ti4O7 particles are uniformly dispersed on the anode catalytic layer. After the stability test, the Ti4O7 support has little decay, demonstrating a high electrochemical stability. IrOx/Ti4O7 with a high dispersity has a great potential to the application on the reversal tolerance anode of the fuel cell.

关键词: proton exchange membrane fuel cell (PEMFC)     fuel starvation     cell reverse     reversal tolerance anode     oxygen evolution reaction    

Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective

《能源前沿(英文)》 doi: 10.1007/s11708-023-0909-1

摘要: The hydrogen fuel cell vehicle is rapidly developing in China for carbon reduction and neutrality. This paper evaluated the life-cycle cost and carbon emission of hydrogen energy via lots of field surveys, including hydrogen production and packing in chlor-alkali plants, transport by tube trailers, storage and refueling in hydrogen refueling stations (HRSs), and application for use in two different cities. It also conducted a comparative study for battery electric vehicles (BEVs) and internal combustion engine vehicles (ICEVs). The result indicates that hydrogen fuel cell vehicle (FCV) has the best environmental performance but the highest energy cost. However, a sufficient hydrogen supply can significantly reduce the carbon intensity and FCV energy cost of the current system. The carbon emission for FCV application has the potential to decrease by 73.1% in City A and 43.8% in City B. It only takes 11.0%–20.1% of the BEV emission and 8.2%–9.8% of the ICEV emission. The cost of FCV driving can be reduced by 39.1% in City A. Further improvement can be obtained with an economical and “greener” hydrogen production pathway.

关键词: hydrogen energy     life-cycle assessment (LCA)     fuel cell vehicle     carbon emission     energy cost    

金属支撑型固体氧化物燃料电池研究进展

周永川,宋世栋,韩敏芳

《中国工程科学》 2013年 第15卷 第2期   页码 27-32

摘要:

随着固体氧化物燃料电池(SOFC)向中低温发展,使得金属材料用于SOFC的关键组件成为可能。金属支撑型SOFC(MS-SOFC)是以金属或合金作为燃料电池支撑体的结构。相对于其他支撑型SOFC,MS-SOFC具有更好的导电能力和导热能力、较高的机械强度以及较低的成本,所以引起了研究人员的广泛关注。目前,MS-SOFC的结构呈多样化发展,支撑体、电极和电解质的材料及其制备工艺也不尽相同。本文介绍了不同结构的MS-SOFC的研究现状,评述了它们各自的制备工艺和存在的问题,并提出了目前MS-SOFC亟需解决的问题。

关键词: 固体氧化物燃料电池     金属支撑型SOFC     薄膜电解质     热循环     快速启动    

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

《能源前沿(英文)》 2022年 第16卷 第6期   页码 879-882 doi: 10.1007/s11708-022-0850-8

摘要: . {{custom_ra.content}} . . . {{article.highlightEn}} . . . {{article.abstractEn}} . . . {{article.authorSummayEn}} . . . . .

标题 作者 时间 类型 操作

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

期刊论文

Accelerated life-time test of MEA durability under vehicle operating conditions in PEM fuel cell

Tian TIAN, Jianjun TANG, Wei GUO, Mu PAN

期刊论文

annealing synthesis of double-shell truncated octahedral Pt-Ni alloys for oxygen reduction reaction of polymerelectrolyte membrane fuel cells

Xiashuang LUO, Yangge GUO, Hongru ZHOU, Huan REN, Shuiyun SHEN, Guanghua WEI, Junliang ZHANG

期刊论文

Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte

Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund

期刊论文

固体氧化物燃料电池的电解质及电极材料的电导率研究方法

贺贝贝,潘 鑫,夏长荣

期刊论文

Using crosslinked polyvinyl alcohol polymer membrane as a separator in the microbial fuel cell

Yanping HOU, Kaiming LI, Haiping LUO, Guangli LIU, Renduo ZHANG, Bangyu QIN, Shanshan CHEN

期刊论文

低温固体氧化物燃料电池的复合电解质材料

谢富丞,王诚,毛宗强

期刊论文

Clayton Radke:聚合物燃料电池电解质膜的分子热力学研究(2019年5月24日)

2021年04月22日

会议视频

Failure mode investigation of fuel cell for vehicle application

Zhongjun HOU, Renfang WANG, Keyong WANG, Weiyu SHI, Danming XING, Hongchun JIANG

期刊论文

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

期刊论文

A hybrid fuel cell for water purification and simultaneously electricity generation

期刊论文

TiO supported IrO for anode reversal tolerance in proton exchange membrane fuel cell

期刊论文

Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective

期刊论文

金属支撑型固体氧化物燃料电池研究进展

周永川,宋世栋,韩敏芳

期刊论文

Significant potential of Solid Oxide Fuel Cell systems for distributed power generation and carbon neutrality

期刊论文